Client
Client module is the main module of PyClarify.
The module provides a class for setting up a JSONRPCClient which will communicate with the Clarify API. Methods for reading and writing to the API is implemented with the help of jsonrpcclient framework <https://www.jsonrpc.org/specification>__.
- class Client(clarify_credentials)[source]
The class containing all rpc methods for talking to Clarify. Uses credential file on initialization.
- Parameters:
clarify_credentials (path to json file) – Path to the Clarify credentials json file from the integrations page in clarify. See user guide for more information.
Example
>>> client = Client("./clarify-credentials.json")
- insert(data) Response [source]
This call inserts data to one or multiple signals. The signal is given an input id by the user. The signal is uniquely identified by its input ID in combination with the integration ID. If no signal with the given combination exists, an empty signal is created. With the creation of the signal, a unique signal id gets assigned to it. Mirroring the Clarify API call integration.insert .
- Parameters:
data (DataFrame, pd.DataFrame, dict) – The data containing the values of a signal in a key-value pair, and separate time axis.
- Returns:
Response.result.data is a dictionary mapping INPUT_ID to SIGNAL_ID.
- Return type:
Response
See also
Client.data_frame
Retrieve data from selected items.
Client.save_signals
Save meta data for signals.
DataFrame
Model used for transporting data to and from Clarify.
Examples
>>> from pyclarify import Client, DataFrame >>> client = Client("./clarify-credentials.json")
Inserting some dummy data.
>>> data = DataFrame( ... series={"INPUT_ID_1": [1, 2], "INPUT_ID_2": [3, 4]}, ... times=["2021-11-01T21:50:06Z", "2021-11-02T21:50:06Z"] ... ) >>> client.insert(data)
Inserting pandas.DataFrame.
>>> import pandas as pd >>> df = pd.DataFrame(data={"INPUT_ID_1": [1, 2], "INPUT_ID_2": [3, 4]}) >>> df.index = ["2021-11-01T21:50:06Z", "2021-11-02T21:50:06Z"] >>> client.insert(df)
- Response
In case of a valid return value, returns a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... signalsByInput = { ... 'INPUT_ID_1': CreateSummary(id = 'SIGNAL_ID_1', created = True), ... 'INPUT_ID_2': CreateSummary(id = 'SIGNAL_ID_2', created = True) ... } ... error = None
Where:
InsertResponse is a a pydantic model with field signalsByInput.
signalsByInput is a Dict[InputID, CreateSummary].
CreateSummary is a a pydantic model with field id: str and created: bool (True if a new instance was created, False is the instance already existed).
In case of the error (for example not equal length) the method return a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = None ... error = Error( ... code = '-32602', ... message = 'Invalid params', ... data = ErrorData( ... trace = <trace_id>, ... params = {'data.series.id': ['not same length as times']} ... ) ... )
- select_items(filter={}, include: List | None = [], skip: int = 0, limit: int | None = 10, sort: List[str] = [], total: bool | None = False) Response [source]
Return item metadata from selected items. For more information click here .
- Parameters:
filter (Filter, optional) – A Filter Model that describes a mongodb filter to be applied.
include (List of strings, optional) – A list of strings specifying which relationships to be included in the response.
skip (int, default 0) – Integer describing how many of the first N items to exclude from response.
limit (int, default 10) – Number of items to include in the match.
sort (list of strings) – List of strings describing the order in which to sort the items in the response.
total (bool, default False) – When true, force the inclusion of a total count in the response. A total count is the total number of resources that matches filter.
- Returns:
Response.result.data
is an array of ItemSelectView- Return type:
Response
Examples
>>> client = Client("./clarify-credentials.json")
Querying items based on a filter.
>>> client.select_items( ... filter = Filter(fields={"name": filter.NotEqual(value="Air Temperature")}), ... )
Getting 1000 items.
>>> client.select_items( ... limit = 1000, ... )
Getting 100 items and sorting by name.
>>> client.select_items( ... limit = 100, ... sort = ["name"], ... )
Getting total number of signals (as meta data).
>>> client.select_items( ... total= True, ... )
Using multiple query parameters.
>>> client.select_items( ... filter = query.Filter(fields={"name": query.NotEqual(value="Air Temperature")}), ... skip = 3, ... limit = 10, ... sort = ["-id", "name"], ... total=True, ... )
- Response
In case of a valid return value, returns a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = Selection( ... meta={ ... 'total': -1, ... 'groupIncludedByType': True ... }, ... data=[ ... ItemSelectView( ... id='c5i41fjsbu8cohpkcpvg', ... type='items', ... meta=ResourceMetadata( ... annotations={ ... "docs-clarify-io/example/environment": "office" ... }, ... attributesHash='7602afa2fe611e0c8eff17f7936e108ee29e6817', ... relationshipsHash='5f36b2220a14b54ee5ea290645ee34d943ea5be5', ... updatedAt=datetime.datetime(2022, 3, 25, 9, 58, 20, 264000, tzinfo=datetime.timezone.utc), ... createdAt=datetime.datetime(2021, 10, 11, 13, 48, 46, 958000, tzinfo=datetime.timezone.utc) ... ), ... attributes=Item( ... name='Dunder ReBond Inventory Level', ... valueType=<TypeSignal.numeric: 'numeric'>, ... description='How many reams of the Dunder ReBond we have in the warehouse.', ... labels={ ... 'type': ['Recycled', 'Bond'], ... 'location': ['Scranton'], ... 'threat-level': ['Midnight'] ... }, ... engUnit='', ... enumValues={}, ... sourceType=<SourceTypeSignal.measurement: 'measurement'>, ... sampleInterval=None, ... gapDetection=datetime.timedelta(seconds=7200), ... visible=True ... ), ... relationships={} ... ), ... ItemSelectView(...), ... ... ... ] ... ), ... error=None
In case of the error the method return a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = None ... error = Error( ... code = '-32602', ... message = 'Invalid params', ... data = ErrorData(trace = <trace_id>, params = {}) ... )
- save_signals(input_ids: List[str] = [], signals: List[Signal] = [], signals_by_input: Dict[str, Signal] = {}, create_only: bool = False, integration: str = None) Response [source]
This call inserts metadata to one or multiple signals. The signals are uniquely identified by its INPUT_ID. Mirroring the Clarify API call integration.saveSignals .
- Parameters:
input_ids (List['INPUT_ID']) – List of strings to be the input ID of the signal. Click here for more information.
signals (List[Signal]) – List of Signal object that contains metadata for a signal. Click here for more information.
create_only (bool, default False) – If set to true, skip update of information for existing signals. That is, all Input_ID’s that map to existing signals are silently ignored.
integration (str, default None) – Integration ID in string format. None means using the integration in credential file.
- Returns:
Response.result.data is a dictionary mapping INPUT_ID to SIGNAL_ID.
- Return type:
Response
Examples
>>> client = Client("./clarify-credentials.json")
Saving by using a dictionary.
>>> from pyclarify import Signal >>> signal = Signal( ... name = "Home temperature", ... description = "Temperature in the bedroom", ... labels = { ... "data-source": ["Raspberry Pi"], ... "location": ["Home"] ... } ... ) >>> input_dict = { ... "<INPUT_ID>" : signal ... } >>> response = client.save_signals( ... signals_by_input=input_dict ... )
Saving using arrays.
>>> from pyclarify import Signal >>> signal = Signal( ... name = "Home temperature", ... description = "Temperature in the bedroom", ... labels = {"data-source": ["Raspberry Pi"], "location": ["Home"]} ... ) >>> client.save_signals(input_ids=['INPUT_ID'], signals=[signal], create_only=False)
- Response
In case of a valid return value, returns a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = SaveSignalsResponse( ... signalsByInput={ ... 'INPUT_ID': SaveSummary(id='SIGNAL_ID', created=True, updated=False) ... } ... ) ... error = None
In case of the error the method return a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = None ... error = Error( ... code = '-32602', ... message = 'Invalid params', ... data = ErrorData(trace = <trace_id>, params = {}) ... )
- publish_signals(signal_ids: List[str] = [], items: List[Item | ItemSaveView] = [], items_by_signal: Dict[str, Item | ItemSaveView] = {}, create_only: bool = False, integration: str = None) Response [source]
Publishes one or multiple signals to create one or multiple items, and creates or updates a set of signals with the provided metadata. Each signal is uniquely identified by its signal ID in combination with the integration ID. Mirroring the Clarify API call admin.publishSignals .
- Parameters:
signal_ids (List['<SIGNAL_ID>']) – List of strings to be the signal ID of the signal.
items (List[ Item ]) – List of Item object that contains metadata for a Item. Click here for more information.
items_by_signal (Dict[ResourceID, Item]) – Dictionary with IDs of signals mapped to Item metadata.
create_only (bool, default False) – If set to True, skip update of information for existing Items. That is, all signal_ids that map to existing items are silently ignored.
integration (str Default None) – Integration ID in string format. None means using the integration in credential file.
- Returns:
Response.result.data is a dictionary mapping <SIGNAL_ID> to <ITEM_ID>.
- Return type:
Response
Examples
>>> client = Client("./clarify-credentials.json")
Publishing by using a dictionary.
>>> from pyclarify import Item >>> item = Item( ... name = "Home temperature", ... description = "Temperature in the bedroom", ... labels = { ... "data-source": ["Raspberry Pi"], ... "location": ["Home"] ... }, ... visible=True ... ) >>> items_dict = { ... "<SIGNAL_ID>": item ... } >>> response = client.publish_signals( ... items_by_signal=item_dict ... )
Publishing using arrays.
>>> from pyclarify import Item >>> item = Item( ... name = "Home temperature", ... description = "Temperature in the bedroom", ... labels = { ... "data-source": ["Raspberry Pi"], ... "location": ["Home"]}, ... visible=True ... ) >>> client.publish_signals(signal_ids=['SIGNAL_ID'], items=[item], create_only=False)
- Response
In case of a valid return value, returns a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = PublishSignalsResponse( ... itemsBySignal = {'SIGNAL_ID': SaveSummary( ... id='ITEM_ID', ... created=True, ... updated=False )}) ... error = None
In case of the error the method return a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = None ... error = Error( ... code = '-32602', ... message = 'Invalid params', ... data = ErrorData(trace = <trace_id>, params = {}) ... )
- select_signals(filter={}, skip: int = 0, limit: int | None = 20, sort: List[str] = [], total: bool | None = False, include: List | None = [], integration: str = None) Response [source]
Return signal metadata from selected signals and/or item.
- Parameters:
filter (Filter, optional) – A Filter Model that describes a mongodb filter to be applied.
skip (int, default 0) – Integer describing how many of the first N items to exclude from response.
limit (int, default 10) – Number of items to include in the match.
sort (list of strings) – List of strings describing the order in which to sort the items in the response.
total (bool, default False) – When true, force the inclusion of a total count in the response. A total count is the total number of resources that matches filter.
include (List of strings, optional) – A list of strings specifying which relationships to be included in the response.
integration (str Default None) – Integration ID in string format. None means using the integration in credential file.
- Returns:
Response.result.data
is an array of SignalSelectView- Return type:
Response
Examples
>>> client = Client("./clarify-credentials.json")
Querying signals based on a filter.
>>> client.select_signals( ... filter = Filter(fields={"name": filter.NotEqual(value="Air Temperature")}), ... )
Getting 1000 signals.
>>> client.select_signals( ... limit = 1000, ... )
Getting 100 signals and sorting by name.
>>> client.select_signals( ... limit = 100, ... sort = ["name"], ... )
Getting total number of signals (as meta data) and including the exposed items.
>>> client.select_signals( ... total= True, ... include = ["item"] ... )
- Response
In case of a valid return value, returns a pydantic model with the following format:
>>> jsonrpc='2.0' ... id='1' ... result=Selection( ... meta=SelectionMeta( ... total=725, ... groupIncludedByType=True ... ), ... data=[ ... SignalSelectView( ... id='c5fg083sab1b6pm3u290', ... type='signals', ... meta=ResourceMetadata( ... annotations={ ... "docs-clarify-io/example/environment": "office" ... }, ... attributesHash='9ae4eb17c8b3b9f24cea06f09a1a4cab34569077', ... relationshipsHash='02852897e7fe1e7896360b3c3914c5207d2af6fa', ... updatedAt=datetime.datetime(2022, 3, 17, 12, 17, 10, 199000, tzinfo=datetime.timezone.utc), ... createdAt=datetime.datetime(2021, 10, 7, 14, 11, 44, 897000, tzinfo=datetime.timezone.utc) ... ), ... attributes=SavedSignal( ... name='Total reams of paper', ... description='Total count of reams of paper in inventory', ... labels={ ... 'type': ['Recycled', 'Bond'], ... 'location': ['Scranton'] ... }, ... sourceType=<SourceTypeSignal.measurement: 'measurement'>, ... valueType=<TypeSignal.numeric: 'numeric'>, ... engUnit='', ... enumValues={}, ... sampleInterval=None, ... gapDetection=None, ... input='inventory_recycled_bond', ... integration=None, ... item=None ... ), ... relationships=RelationshipsDict( ... integration=RelationshipData( ... data=RelationshipMetadata( ... type='integrations', ... id='c5e3u8coh8drsbpi4cvg' ... ) ... ), ... item=RelationshipData(data=None) ... ) ... ), ... ... ... ], ... included=IncludedField( ... integration=None, ... items=[ ... ItemSelectView( ... id='c5i41fjsbu8cohpkcpvg', ... type='items', ... meta=ResourceMetadata( ... annotations={ ... "docs-clarify-io/example/environment": "office" ... }, ... attributesHash='7602afa2fe611e0c8eff17f7936e108ee29e6817', ... relationshipsHash='5f36b2220a14b54ee5ea290645ee34d943ea5be5', ... updatedAt=datetime.datetime(2022, 3, 25, 9, 58, 20, 264000, tzinfo=datetime.timezone.utc), ... createdAt=datetime.datetime(2021, 10, 11, 13, 48, 46, 958000, tzinfo=datetime.timezone.utc) ... ), ... attributes=Item( ... name='Dunder ReBond Inventory Level', ... valueType=<TypeSignal.numeric: 'numeric'>, ... description='How many reams of the Dunder ReBond we have in the warehouse.', ... labels={ ... 'type': ['Recycled', 'Bond'], ... 'location': ['Scranton'], ... 'threat-level': ['Midnight'] ... }, ... engUnit='', ... enumValues={}, ... sourceType=<SourceTypeSignal.measurement: 'measurement'>, ... sampleInterval=None, ... gapDetection=datetime.timedelta(seconds=7200), ... visible=True ... ) ... ) ... ... ... ] ... ) ... ) ... error=None
In case of the error the method return a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = None ... error = Error( ... code = '-32602', ... message = 'Invalid params', ... data = ErrorData(trace = <trace_id>, params = {}) ... )
- data_frame(filter={}, sort: List[str] = [], limit: int = 20, skip: int = 0, total: bool = False, gte: datetime | str = None, lt: datetime | str = None, rollup: str | timedelta = None, timeZone: str | None = 'UTC', firstDayOfWeek: int | None = 1, origin: str | datetime | None = None, last: int = -1, include: List[str] = [], window_size: str | timedelta = None) Response [source]
Retrieve DataFrame for items stored in Clarify.
- Parameters:
filter (Filter, optional) – A Filter Model that describes a mongodb filter to be applied.
sort (list of strings) – List of strings describing the order in which to sort the items in the response.
limit (int, default 20) – The maximum number of resources to select. Negative numbers means no limit, which may or may not be allowed.
skip (int, default: 0) – Skip the first N matches. A negative skip is treated as 0.
total (bool, default: False) – When true, force the inclusion of a total count in the response. A total count is the total number of resources that matches filter.
gte (ISO 8601 timestamp , default: <now - 7 days>) – An RFC3339 time describing the inclusive start of the window.
lt (ISO 8601 timestamp , default: <now + 7 days>) – An RFC3339 time describing the exclusive end of the window.
last (int, default: -1) – If above 0, select last N timestamps per series. The selection happens after the rollup aggregation.
rollup (RFC3339 duration or “window”, default: None) – If duration is specified, roll-up the values into either the full time window (gte -> lt) or evenly sized buckets.
include (List of strings, default: []) – A list of strings specifying which relationships to be included in the response.
window_size (RFC3339 duration, default None) – If duration is specified, the iterator will use the specified window as a paging size instead of default API limits. This is commonly used when resolution of data is too high to be packaged with default values.
- Returns:
Response.result.data
is a DataFrame- Return type:
Response
See also
Client.select_items
Retrieve item metadata from selected items.
Notes
Time selection:
Maximum window size is 40 days (40 * 24 hours) when rollup is null or less than PT1M (1 minute).
Maximum window size is 400 days (400 * 24 hours) when rollup is greater than or equal to PT1M (1 minute).
No maximum window size if rollup is window.
The limits are used internally by the Clarify API. Should you have very high resolution data (>=1hz), you can use
time_window
argument to reduce the window, resulting in more requests.Examples
>>> client = Client("./clarify-credentials.json")
Getting data frame with a filter.
>>> client.data_frame( ... filter = query.Filter(fields={"name": query.NotEqual(value="Air Temperature")}), ... )
Getting data with a time range.
>>> client.data_frame( ... gte="2022-01-01T01:01:01Z", ... lt="2022-01-09T01:01:01Z", ... )
Skipping first 3 items and only retrieving 5 items, sorted with descending id.
>>> client.data_frame( ... sort = ["-id"], ... limit = 5, ... skip = 3, ... )
Setting a lower window size due to json decoding errors.
>>> client.data_frame( ... window_size = "P20DT", ... limit = 5, ... skip = 3, ... )
Warning
We recommend using
rollup
instead ofwindow_size
due to execution time being much faster.Using rollup to get sampled data.
>>> r = client.data_frame( ... rollup = "PT5M", ... limit = 5, ... skip = 3, ... ) >>> r.result.data ... DataFrame( ... times=[datetime.datetime(2022, 9, 5, 11, 5, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 5, 11, 10, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 5, 11, 15, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 5, 11, 30, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 5, 11, 35, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 6, 13, 40, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 6, 13, 45, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 6, 13, 50, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 7, 13, 0, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 7, 13, 5, tzinfo=datetime.timezone.utc), datetime.datetime(2022, 9, 7, 13, 10, tzinfo=datetime.timezone.utc)], ... series={ ... 'cbpmaq6rpn52969vfl1g_avg': [1.0, 5.0, 5.875, 6.8, 4.2, 7.0, 3.6, 5.0, 2.0, 2.2, 4.25], ... 'cbpmaq6rpn52969vfl1g_count': [2.0, 10.0, 8.0, 5.0, 5.0, 3.0, 5.0, 2.0, 1.0, 5.0, 4.0], ... 'cbpmaq6rpn52969vfl1g_max': [1.0, 9.0, 9.0, 9.0, 8.0, 9.0, 6.0, 6.0, 2.0, 6.0, 8.0], ... 'cbpmaq6rpn52969vfl1g_min': [1.0, 0.0, 0.0, 5.0, 1.0, 6.0, 0.0, 4.0, 2.0, 0.0, 0.0], ... 'cbpmaq6rpn52969vfl1g_sum': [2.0, 50.0, 47.0, 34.0, 21.0, 21.0, 18.0, 10.0, 2.0, 11.0, 17.0], ... 'cbpmaq6rpn52969vfl20_avg': [5.0, 4.7, 3.75, 3.6, 5.2, 7.333333333333333, 3.6, 7.0, 9.0, 3.6, 6.75], ... 'cbpmaq6rpn52969vfl20_count': [2.0, 10.0, 8.0, 5.0, 5.0, 3.0, 5.0, 2.0, 1.0, 5.0, 4.0], ... 'cbpmaq6rpn52969vfl20_max': [8.0, 9.0, 8.0, 7.0, 9.0, 9.0, 8.0, 9.0, 9.0, 8.0, 9.0], ... 'cbpmaq6rpn52969vfl20_min': [2.0, 1.0, 0.0, 1.0, 2.0, 4.0, 0.0, 5.0, 9.0, 0.0, 1.0], ... 'cbpmaq6rpn52969vfl20_sum': [10.0, 47.0, 30.0, 18.0, 26.0, 22.0, 18.0, 14.0, 9.0, 18.0, 27.0], ... 'cbpmaq6rpn52969vfl2g_avg': [8.0, 3.7, 4.75, 1.6, 3.6, 2.0, 5.6, 8.5, 4.0, 3.8, 5.0], ... 'cbpmaq6rpn52969vfl2g_count': [2.0, 10.0, 8.0, 5.0, 5.0, 3.0, 5.0, 2.0, 1.0, 5.0, 4.0], ... 'cbpmaq6rpn52969vfl2g_max': [8.0, 9.0, 9.0, 5.0, 8.0, 5.0, 9.0, 9.0, 4.0, 8.0, 7.0], ... 'cbpmaq6rpn52969vfl2g_min': [8.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 8.0, 4.0, 0.0, 1.0], ... 'cbpmaq6rpn52969vfl2g_sum': [16.0, 37.0, 38.0, 8.0, 18.0, 6.0, 28.0, 17.0, 4.0, 19.0, 20.0], ... 'cbpmaq6rpn52969vfl30_avg': [2.0, 5.6, 3.875, 3.2, 5.2, 4.666666666666667, 5.0, 4.5, 7.0, 5.8, 8.0], ... 'cbpmaq6rpn52969vfl30_count': [2.0, 10.0, 8.0, 5.0, 5.0, 3.0, 5.0, 2.0, 1.0, 5.0, 4.0], ... 'cbpmaq6rpn52969vfl30_max': [3.0, 9.0, 7.0, 9.0, 9.0, 8.0, 7.0, 8.0, 7.0, 9.0, 9.0], ... 'cbpmaq6rpn52969vfl30_min': [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 2.0, 1.0, 7.0, 1.0, 6.0], ... 'cbpmaq6rpn52969vfl30_sum': [4.0, 56.0, 31.0, 16.0, 26.0, 14.0, 25.0, 9.0, 7.0, 29.0, 32.0], ... 'cbpmaq6rpn52969vfl3g_avg': [1.5, 3.3, 6.75, 5.8, 4.8, 5.666666666666667, 3.8, 6.5, 5.0, 3.0, 3.25], ... 'cbpmaq6rpn52969vfl3g_count': [2.0, 10.0, 8.0, 5.0, 5.0, 3.0, 5.0, 2.0, 1.0, 5.0, 4.0], ... 'cbpmaq6rpn52969vfl3g_max': [2.0, 9.0, 9.0, 9.0, 9.0, 7.0, 8.0, 8.0, 5.0, 7.0, 5.0], ... 'cbpmaq6rpn52969vfl3g_min': [1.0, 1.0, 4.0, 1.0, 1.0, 3.0, 0.0, 5.0, 5.0, 0.0, 0.0], ... 'cbpmaq6rpn52969vfl3g_sum': [3.0, 33.0, 54.0, 29.0, 24.0, 17.0, 19.0, 13.0, 5.0, 15.0, 13.0] ... })
- Response
In case of a valid return value, returns a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = Selection( ... meta={ ... 'total': -1, ... 'groupIncludedByType': True ... }, ... data=DataFrame( ... times=[ ... datetime.datetime(2022, 1, 1, 12, 0, tzinfo=datetime.timezone.utc), ... datetime.datetime(2022, 1, 1, 13, 0, tzinfo=datetime.timezone.utc), ... ...], ... series={ ... 'c5i41fjsbu8cohpkcpvg': [0.18616, 0.18574000000000002, ...], ... 'c5i41fjsbu8cohfdepvg': [450.876543125, 450.176543554, ...], ... ... ... } ... ) ... ... error = None
In case of the error the method return a pydantic model with the following format:
>>> jsonrpc = '2.0' ... id = '1' ... result = None ... error = Error( ... code = '-32602', ... message = 'Invalid params', ... data = ErrorData(trace = <trace_id>, params = {}) ... )
Tip
You can change the type of DataFrame from pyclarify to pandas using the to_pandas() method.
>>> r = client.data_frame() >>> c_df = r.result.data >>> p_df = c_df.to_pandas() >>> p_df.head() ... cbpmaq6rpn52969vfl00 cbpmaq6rpn52969vfl0g ... cbpmaq6rpn52969vfl90 cbpmaq6rpn52969vfl9g ... 2022-09-05 11:30:11.432725+00:00 2.0 8.0 ... 0.0 4.0 ... 2022-09-05 11:31:11.432723+00:00 9.0 2.0 ... 8.0 8.0 ... 2022-09-05 11:32:11.432722+00:00 6.0 4.0 ... 8.0 9.0 ... 2022-09-05 11:33:11.432720+00:00 0.0 7.0 ... 9.0 4.0 ... 2022-09-05 11:34:11.432719+00:00 8.0 6.0 ... 8.0 5.0
- evaluate(rollup: str | timedelta, timeZone: str | None = None, firstDayOfWeek: int | None = None, origin: str | datetime | None = None, items: List[Dict | ItemAggregation] = [], calculations: List[Dict | Calculation] = [], series: List[str] = [], gte: datetime | str = None, lt: datetime | str = None, last: int = -1, include: List[str] = [], window_size: str | timedelta = None) Response [source]
Retrieve DataFrame by aggregating time-series data and perform evaluate formula expressions.
- Parameters:
items (Union[Dict, ItemAggregation]) – List of item aggregations, describing a particular aggregation method for the item in list. See the class from pyclarify.views.evaluate.ItemAggregation for attributes.
calculations (List[Union[Dict, Calculation]]) – List of calculations, where a calculation has access to items and previous calculations in context. See the class from pyclarify.views.evaluate.Calculation for attributes
gte (ISO 8601 timestamp , default: <now - 7 days>) – An RFC3339 time describing the inclusive start of the window.
lt (ISO 8601 timestamp , default: <now + 7 days>) – An RFC3339 time describing the exclusive end of the window.
last (int, default: -1) – If above 0, select last N timestamps per series. The selection happens after the rollup aggregation.
rollup (RFC3339 duration or “window”, default: None) – If duration is specified, roll-up the values into either the full time window (gte -> lt) or evenly sized buckets.
include (List of strings, default: []) – A list of strings specifying which relationships to be included in the response.
window_size (RFC3339 duration, default None) – If duration is specified, the iterator will use the specified window as a paging size instead of default API limits. This is commonly used when resolution of data is too high to be packaged with default values.
- Returns:
Response.result.data
is a DataFrame- Return type:
Response
See also
Client.data_frame
Retrieve data with more filter functionality and without rollup.
Notes
Time selection:
Maximum window size is 40 days (40 * 24 hours) when rollup is null or less than PT1M (1 minute).
Maximum window size is 400 days (400 * 24 hours) when rollup is greater than or equal to PT1M (1 minute).
No maximum window size if rollup is window.
The limits are used internally by the Clarify API. Should you have very high resolution data (>=1hz), you can use
time_window
argument to reduce the window, resulting in more requests.Examples
>>> client = Client("./clarify-credentials.json")
Getting a single item.
>>> item = ItemAggregation( ... id="cbpmaq6rpn52969vfl00", ... aggregation="max", ... alias="i1" ... ) >>> r = client.evaluate(items=[item1], rollup="PT10M") >>> print(r.result.data.to_pandas()) ... i1 ... 2023-10-20 10:20:00+00:00 6.0 ... 2023-10-20 10:30:00+00:00 9.0 ... 2023-10-20 10:40:00+00:00 8.0
Getting a single item in a time range.
>>> r = client.evaluate(items=[item1], gte="2022-08-10T00:00:00Z", lt="2022-08-30T00:00:00Z", rollup="PT10M") >>> print(r.result.data.to_pandas()) ... i1 ... 2022-08-10 09:50:00+00:00 8.0 ... 2022-08-10 10:00:00+00:00 9.0 ... 2022-08-25 11:30:00+00:00 8.0 ... 2022-08-30 15:10:00+00:00 2.0 ... 2022-08-30 15:20:00+00:00 9.0 ... 2022-08-30 15:30:00+00:00 9.0
Using a calculation on a single item.
>>> calc = Calculation( ... formula="i1**2", ... alias="power2" ... ) >>> r = client.evaluate(items=[item1], calculations=[calc], rollup="PT10M") >>> print(r.result.data.to_pandas()) ... i1 power2 ... 2023-10-20 10:20:00+00:00 6.0 36.0 ... 2023-10-20 10:30:00+00:00 9.0 81.0 ... 2023-10-20 10:40:00+00:00 8.0 64.0
Adding two items.
>>> item = ItemAggregation( ... id="cbpmaq6rpn52969vfl0g", ... aggregation="avg", ... alias="i2" ... ) >>> calc = Calculation( ... formula="i1 + i2", ... alias="sumi1i2" ... ) >>> r = client.evaluate(items=[item1, item2], calculations=[calc], rollup="PT10M") >>> print(r.result.data.to_pandas()) ... i1 i2 sumi1i2 ... 2023-10-20 10:20:00+00:00 6.0 3.0 9.0 ... 2023-10-20 10:30:00+00:00 9.0 4.0 13.0 ... 2023-10-20 10:40:00+00:00 8.0 4.0 12.0
Tip
You can limit the number of series to be returned by specifying aliases in the series parameter.
>>> r = client.evaluate( ... items=[item1, item2], ... calculations=[calc], ... rollup="PT10M", ... series=["sumi1i2"] ... ) >>> print(r.result.data.to_pandas()) ... sumi1i2 ... 2023-10-20 10:20:00+00:00 9.0 ... 2023-10-20 10:30:00+00:00 13.0 ... 2023-10-20 10:40:00+00:00 12.0
Chaining calculations.
>>> calc1 = Calculation( ... formula="i1 + i2", ... alias="sum" ... ) >>> calc2 = Calculation( ... formula="i1/sum", ... alias="ratei1" ... ) >>> calc2 = Calculation( ... formula="floor(ratei1*100)", ... alias="ratio" ... ) >>> r = client.evaluate( ... items=[item1, item2], ... calculations=[calc1, calc2, calc3], ... rollup="PT10M", ... series=["i1", "i2", "ratio"] ... ) >>> print(r.result.data.to_pandas()) ... i1 i2 ratio ... 2023-10-20 10:20:00+00:00 6.0 3.0 66.0 ... 2023-10-20 10:30:00+00:00 9.0 4.0 69.0 ... 2023-10-20 10:40:00+00:00 8.0 4.0 66.0